Exercise 37

The displacement (in meters) of an object moving in a straight line is given by $s=1+2 t+\frac{1}{4} t^{2}$, where t is measured in seconds.
(a) Find the average velocity over each time period.
(i) $[1,3]$
(ii) $[1,2]$
(iii) $[1,1.5]$ (iv) $[1,1.1]$
(b) Find the instantaneous velocity when $t=1$.

Solution

Part (a)

The average velocity over each time period is given by the slope of the secant line.
(i) $[1,3]: \quad m=\frac{s(3)-s(1)}{3-1}=\frac{\left[1+2(3)+\frac{1}{4}(3)^{2}\right]-\left[1+2(1)+\frac{1}{4}(1)^{2}\right]}{2}=3$
(ii) $[1,2]: \quad m=\frac{s(2)-s(1)}{2-1}=\frac{\left[1+2(2)+\frac{1}{4}(2)^{2}\right]-\left[1+2(1)+\frac{1}{4}(1)^{2}\right]}{1}=2.75$
(iii) $[1,1.5]: \quad m=\frac{s(1.5)-s(1)}{1.5-1}=\frac{\left[1+2(1.5)+\frac{1}{4}(1.5)^{2}\right]-\left[1+2(1)+\frac{1}{4}(1)^{2}\right]}{0.5}=2.625$
(iv) $[1,1.1]: \quad m=\frac{s(1.1)-s(1)}{1.1-1}=\frac{\left[1+2(1.1)+\frac{1}{4}(1.1)^{2}\right]-\left[1+2(1)+\frac{1}{4}(1)^{2}\right]}{0.1}=2.525$

The units of these average velocities are meters per second.

Part (b)
To find the instantaneous velocity when $t=1$, calculate the derivative of $s(t)$ and then set $t=1$.
Use the definition of the derivative.

$$
\begin{aligned}
s^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[1+2(t+h)+\frac{1}{4}(t+h)^{2}\right]-\left(1+2 t+\frac{1}{4} t^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[1+2(t+h)+\frac{1}{4}\left(t^{2}+2 t h+h^{2}\right)\right]-\left(1+2 t+\frac{1}{4} t^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(1+2 t+2 h+\frac{1}{4} t^{2}+\frac{1}{2} t h+\frac{1}{4} h^{2}\right)-1-2 t-\frac{1}{4} t^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h+\frac{1}{2} t h+\frac{1}{4} h^{2}}{h}
\end{aligned}
$$

Cancel out h and evaluate the limit.

$$
\begin{aligned}
s^{\prime}(t) & =\lim _{h \rightarrow 0}\left(2+\frac{1}{2} t+\frac{1}{4} h\right) \\
& =2+\frac{1}{2} t
\end{aligned}
$$

The instantaneous velocity when $t=1$ is then

$$
s^{\prime}(1)=2+\frac{1}{2}(1)=2.5,
$$

where the units are in meters per second.

